Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 36(2): 368-380, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36571263

RESUMO

The relationship between genetic differentiation and phenotypic plasticity can provide information on whether plasticity generally facilitates or hinders adaptation to environmental change. Here, we studied wing shape variation in a damselfly (Lestes sponsa) across a latitudinal gradient in Europe that differed in time constraints mediated by photoperiod and temperature. We reared damselflies from northern and southern populations in the laboratory using a reciprocal transplant experiment that simulated time-constrained (i.e. northern) and unconstrained (southern) photoperiods and temperatures. After emergence, adult wing shape was analysed using geometric morphometrics. Wings from individuals in the northern and southern populations differed significantly in shape when animals were reared in their respective native environment. Comparing wing shape across environments, we found evidence for phenotypic plasticity in wing shape, and this response differed across populations (i.e. G × E interactions). This interaction was driven by a stronger plastic response by individuals from the northern population and differences in the direction of plastic wing shape changes among populations. The alignment between genetic and plastic responses depended on the specific combination of population and rearing environment. For example, there was an alignment between plasticity and genetic differentiation under time-constrained, but not under non-time-constrained conditions for forewings. We thus find mixed support for the hypothesis that environmental plasticity and genetic population differentiation are aligned. Furthermore, although our laboratory treatments mimicked the natural climatic conditions at northern and southern latitudes, the effects of population differences on wing shape were two to four times stronger than plastic effects. We discuss our results in terms of time constraints and the possibility that natural and sexual selection is acting differently on fore- and hindwings.


Assuntos
Adaptação Fisiológica , Odonatos , Animais , Adaptação Fisiológica/fisiologia , Deriva Genética , Europa (Continente) , Temperatura , Asas de Animais , Odonatos/genética
2.
Ecol Evol ; 12(12): e9580, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36523533

RESUMO

Madagascar is known for its high endemism and as many as 90% of this unique diversity are forest-dwellers. Unfortunately, the forest cover of Madagascar is decreasing at an alarming rate. This decrease can also affect aquatic insects, but our knowledge on aquatic insect diversity and distribution on Madagascar are limited. Although the eastern rainforests are considered the most diverse, the Central Highlands of Madagascar also harbors unique microendemic fauna but has been less studied. Here, we analyze the aquatic Adephaga beetle fauna of three remaining protected forests of the Central Highlands. Diversity, abundance, and uniqueness are compared between and within natural forests and surrounding grasslands. At least 15 undescribed species were found, highlighting the Central Highlands as an important area for endemism. The natural forests and the surrounding grasslands differed significantly in species assemblages. Interestingly, the three remaining forests differed in their assemblages with the geographically more distant Manjakatompo Ankaratra having the most unique fauna but also the highest altitude span. By contrast, the species composition was similar between the peripheral zones of each of the three remaining forests. The similarity of the fauna in the peripheral open habitats illustrates how some local forest endemics are replaced with widespread generalists in degraded habitats. Our study shows that the remaining forests of the Central Highlands of Madagascar are important refuges of unique fauna at high risk of extinction.

3.
Environ Entomol ; 51(5): 910-921, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36017921

RESUMO

Biodiversity is heavily influenced by ongoing climate change, which often results in species undergoing range shifts, either poleward or uphill. Range shifts can occur provided suitable habitats exist within reach. However, poleward latitudinal shifts might be limited by additional abiotic or biotic constraints, such as increased seasonality, photoperiod patterns, and species interactions. To gain insight into the dynamics of insect range shifts at high latitudes, we constructed ecological niche models (ENMs) for 57 Odonata species occurring in northern Europe. We used citizen science data from Sweden and present-day climatic variables covering a latitudinal range of 1,575 km. Then, to measure changes in range and interactions among Odonata species, we projected the ENMs up to the year 2080. We also estimated potential changes in species interactions using niche overlap and co-occurrence patterns. We found that most Odonata species are predicted to expand their range northward. The average latitudinal shift is expected to reach 1.83 and 3.25 km y-1 under RCP4.5 and RCP8.5 scenarios, respectively, by 2061-2080. While the most warm-dwelling species may increase their range, our results indicate that cold-dwelling species will experience range contractions. The present-day niche overlap patterns among species will remain largely the same in the future. However, our results predict changes in co-occurrence patterns, with many species pairs showing increased co-occurrence, while others will no longer co-occur because of the range contractions. In sum, our ENM results suggest that species assemblages of Odonata-and perhaps insects in general-in northern latitudes will experience great compositional changes.


Assuntos
Mudança Climática , Odonatos , Animais , Biodiversidade , Ecossistema , Modelos Teóricos
4.
Environ Microbiome ; 17(1): 36, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794681

RESUMO

BACKGROUND: Microplastics are a pervasive pollutant widespread in the sea and freshwater from anthropogenic sources, and together with the presence of pesticides, they can have physical and chemical effects on aquatic organisms and on their microbiota. Few studies have explored the combined effects of microplastics and pesticides on the host-microbiome, and more importantly, the effects across multiple trophic levels. In this work, we studied the effects of exposure to microplastics and the pesticide deltamethrin on the diversity and abundance of the host-microbiome across a three-level food chain: daphnids-damselfly-dragonflies. Daphnids were the only organism exposed to 1 µm microplastic beads, and they were fed to damselfly larvae. Those damselfly larvae were exposed to deltamethrin and then fed to the dragonfly larvae. The microbiotas of the daphnids, damselflies, and dragonflies were analyzed. RESULTS: Exposure to microplastics and deltamethrin had a direct effect on the microbiome of the species exposed to these pollutants. An indirect effect was also found since exposure to the pollutants at lower trophic levels showed carry over effects on the diversity and abundance of the microbiome on higher trophic levels, even though the organisms at these levels where not directly exposed to the pollutants. Moreover, the exposure to deltamethrin on the damselflies negatively affected their survival rate in the presence of the dragonfly predator, but no such effects were found on damselflies fed with daphnids that had been exposed to microplastics. CONCLUSIONS: Our study highlights the importance of evaluating ecotoxicological effects at the community level. Importantly, the indirect exposure to microplastics and pesticides through diet can potentially have bottom-up effects on the trophic webs.

5.
Insects ; 13(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35886798

RESUMO

Under climate warming, temperate ectotherms are expected to hatch earlier and grow faster, increase the number of generations per season, i.e., voltinism. Here, we studied, under laboratory conditions, the impact of artificial warming and manipulated hatching dates on life history (voltinism, age and mass at emergence and growth rate) and physiological traits (phenoloxidase (PO) activity at emergence, as an indicator of investment in immune function) and larval survival rate in high-latitude populations of the damselfly Ischnura elegans. Larvae were divided into four groups based on crossing two treatments: early versus late hatching dates and warmer versus control rearing temperature. Damselflies were reared in groups over the course of one (univoltine) or two (semivoltine) growth seasons, depending on the voltinism. Warming temperature did not affect survival rate. However, warming increased the number of univoltine larvae compared to semivoltine larvae. There was no effect of hatching phenology on voltinism. Early hatched larvae reared under warming had elevated PO activity, regardless of their voltinism, indicating increased investment in immune function against pathogens. Increased PO activity was not associated with effects on age or mass at emergence or growth rate. Instead, life history traits were mainly affected by temperature and voltinism. Warming decreased development time and increased growth rate in univoltine females, yet decreased growth rate in univoltine males. This indicates a stronger direct impact of warming and voltinism compared to impacts of hatching phenology on life history traits. The results strengthen the evidence that phenological shifts in a warming world may affect physiology and life history in freshwater insects.

6.
Sci Rep ; 12(1): 12910, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902660

RESUMO

The Earth's climate is changing with a trend towards higher mean temperatures and increased temperature fluctuations. Little attention has been paid to the effects of thermal variation on competition within species. Understanding the temperature-dependence of competition is important since it might affect dynamics within and between populations. In a laboratory experiment we investigated the effects of thermal variation on growth and cannibalism in larvae of a damselfly. The temperature treatments included three amplitudes between 20 and 26 °C with an average of 23 °C, and a constant control at 23 °C. Larvae were also raised at five constant temperatures for an estimation of the thermal performance curve, which showed that the thermal optimum for growth was 26.9 °C. Cannibalism was significantly positively correlated with initial body size variance. There was neither a difference among the temperature variation treatments, nor between the constant and the variation treatments in growth and cannibalism. Hence, positive and negative effects of temperature variation within the linear range of a species thermal performance curve might cancel each other out. Since our study mimicked natural temperature conditions, we suggest that the increase in temperature variation predicted by climate models will not necessarily differ from the effects without an increase in variation.


Assuntos
Canibalismo , Clima , Animais , Temperatura Alta , Larva , Temperatura
7.
Sci Rep ; 11(1): 18642, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545136

RESUMO

Large-scale latitudinal studies that include both north and south edge populations and address sex differences are needed to understand how selection has shaped trait variation. We quantified the variation of flight-related morphological traits (body size, wing size, ratio between wing size and body size, and wing shape) along the whole latitudinal distribution of the damselfly Lestes sponsa, spanning over 2700 km. We tested predictions of geographic variation in the flight-related traits as a signature of: (1) stronger natural selection to improve dispersal in males and females at edge populations; (2) stronger sexual selection to improve reproduction (fecundity in females and sexual behaviors in males) at edge populations. We found that body size and wing size showed a U-shaped latitudinal pattern, while wing ratio showed the inverse shape. However, wing shape varied very little along the latitudinal gradient. We also detected sex-differences in the latitudinal patterns of variation. We discuss how latitudinal differences in natural and sexual selection regimes can lead to the observed quadratic patterns of variation in body and wing morphology via direct or indirect selection. We also discuss the lack of latitudinal variation in wing shape, possibly due to aerodynamic constraints.


Assuntos
Odonatos/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Tamanho Corporal , Europa (Continente) , Feminino , Voo Animal , Geografia , Masculino , Odonatos/genética , Odonatos/fisiologia , Fenótipo , Seleção Genética
8.
Environ Pollut ; 289: 117848, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332169

RESUMO

There is growing evidence of widespread contamination of freshwater ecosystems with microplastics. However, the effects of chronic microplastic ingestion and its interaction with other pollutants and stress factors on the life-history traits and the host-microbiome of aquatic invertebrates are not well understood. This study investigates the effects of exposure to sediment spiked with 1 µm polystyrene-based latex microplastic spheres, an environmentally realistic concentration of a pyrethroid pesticide (esfenvalerate), and a combination of both treatments on the life-history traits of the benthic-dwelling invertebrate, Chironomus riparius and its microbial community. The chironomid larvae were also exposed to two food conditions: abundant or limited food in the sediment, monitored for 28 and 34 days respectively. The microplastics and esfenvalerate had negative effects on adult emergence and survival, and these effects differed between the food level treatments. The microbiome diversity was negatively affected by the exposure to microplastics, while the relative abundances of the four top phyla were significantly affected only in the high food level treatment. Although the combined exposure to microplastics and esfenvalerate showed some negative effects on survival and emergence, there was little evidence for synergistic effects when compared to the single exposure. The food level affected all life-history traits and the microbiota, and lower food levels intensified the negative effects of the exposure to microplastics, esfenvalerate and their combination. We argue that these pollutants can affect crucial life-history traits such as successful metamorphosis and the host-microbiome. Therefore, it should be taken into consideration for toxicological assessment of pollutant acceptability. Our study highlights the importance of investigating possible additive and synergic activities between stressors to understand the effects of pollutants in the life story traits and host-microbiome.


Assuntos
Chironomidae , Microbiota , Piretrinas , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Piretrinas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Sci Total Environ ; 792: 148071, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153756

RESUMO

Ecological communities are structured by several mechanisms, including temporal, spatial and environmental factors. However, the simultaneous effects of these factors have rarely been studied. Here, we investigated their role on water beetle assemblages sampled over a period of 18 years. Water beetles were sampled in the spring of each year in lotic and lentic water bodies from mainland region of Kalmar and Öland Island in southeastern Sweden. We assessed how past assemblage structure, environmental factors and spatial variables correlated with current assemblage structure using a variation partitioning approach. We also tested for correlates of temporal beta diversity of water beetle assemblages with multiple regressions. We found that past water beetle assemblage structure explained current water beetle assemblage structure better than the environmental and spatial correlates. We also observed that temporal beta diversity of water beetle assemblages was mainly due to species gain rather than to species loss. Finally, environmental variables (e.g., hydroperiod, habitat size and hydrology) and timespan between sampling events explained part of temporal beta diversity and contribution of species loss to total assemblage dissimilarity variation. Despite the fact that most variation remained unexplained, we found that ecological factors that have been thought to be important for water beetle richness and abundance in past studies (e.g. water body size, water permanence, shore slope, and whether the water body is lentic or lotic) were also correlated to temporal beta diversity. From a conservation point of view, our study suggest that temporal variability of assemblage structure should be included in biological monitoring because of its potential to predict current assemblage structure.


Assuntos
Besouros , Ecossistema , Animais , Biodiversidade , Água Doce , Água
10.
Evolution ; 75(2): 464-475, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33368212

RESUMO

Phenotypic plasticity can either hinder or promote adaptation to novel environments. Recent studies that have quantified alignments between plasticity, genetic variation, and divergence propose that such alignments may reflect constraints that bias future evolutionary trajectories. Here, we emphasize that such alignments may themselves be a result of natural selection and do not necessarily indicate constraints on adaptation. We estimated developmental plasticity and broad sense genetic covariance matrices (G) among damselfly populations situated along a latitudinal gradient in Europe. Damselflies were reared at photoperiod treatments that simulated the seasonal time constraints experienced at northern (strong constraints) and southern (relaxed constraints) latitudes. This allowed us to partition the effects of (1) latitude, (2) photoperiod, and (3) environmental novelty on G and its putative alignment with adaptive plasticity and divergence. Environmental novelty and latitude did not affect G, but photoperiod did. Photoperiod increased evolvability in the direction of observed adaptive divergence and developmental plasticity when G was assessed under strong seasonal time constraints at northern (relative to southern) photoperiod. Because selection and adaptation under time constraints is well understood in Lestes damselflies, our results suggest that natural selection can shape the alignment between divergence, plasticity, and evolvability.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Odonatos/genética , Estações do Ano , Seleção Genética , Animais , Feminino , Variação Genética , Masculino , Odonatos/crescimento & desenvolvimento , Fotoperíodo
11.
Sci Rep ; 10(1): 9380, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523129

RESUMO

Citizen science data (CSD) have the potential to be a powerful scientific approach to assess, monitor and predict biodiversity. Here, we ask whether CSD could be used to predict biodiversity of recently constructed man-made habitats. Biodiversity data on adult dragonfly abundance from all kinds of aquatic habitats collected by citizen scientists (volunteers) were retrieved from the Swedish Species Observation System and were compared with dragonfly abundance in man-made stormwater ponds. The abundance data of dragonflies in the stormwater ponds were collected with a scientific, standardized design. Our results showed that the citizen science datasets differed significantly from datasets collected scientifically in stormwater ponds. Hence, we could not predict biodiversity in stormwater ponds from the data collected by citizen scientists. Using CSD from past versus recent years or from small versus large areas surrounding the stormwater ponds did not change the outcome of our tests. However, we found that biodiversity patterns obtained with CSD were similar to those from stormwater ponds when we restricted our analyses to rare species. We also found a higher beta diversity for the CSD compared to the stormwater dataset. Our results suggest that if CSD are to be used for estimating or predicting biodiversity, we need to develop methods that take into account or correct for the under-reporting of common species in CSD.


Assuntos
Biodiversidade , Ciência do Cidadão/métodos , Odonatos/fisiologia , Animais , Ecossistema , Hidrobiologia/métodos , Lagoas , Prognóstico , Suécia
12.
Sci Rep ; 10(1): 8822, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483233

RESUMO

The magnitude and ecological impact of climate change varies with latitude. Several recent models have shown that tropical ectotherms face the greatest risk from warming because they currently experience temperatures much closer to their physiological optimum than temperate taxa. Even a small increase in temperature may thus result in steep fitness declines in tropical species but increased fitness in temperate species. This prediction, however, is based on a model that does not account for latitudinal differences in activity periods. Temperate species in particular may often experience considerably higher temperatures than expected during the active season. Here, we integrate data on insect warming tolerance and temperature-dependent development to re-evaluate latitudinal trends in thermal safety margins after accounting for latitudinal trends in insect seasonal activity. Our analyses suggest that temperate and tropical species differ far less in thermal safety margins than commonly assumed, and add to the recent number of studies suggesting that tropical and temperate species might face similar levels of threat from climate change.


Assuntos
Mudança Climática , Insetos/fisiologia , Estações do Ano , Aclimatação , Animais , Ecossistema , Clima Tropical
13.
Proc Biol Sci ; 286(1897): 20182625, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30963847

RESUMO

Increased eye size in animals results in a larger retinal image and thus improves visual acuity. Thus, larger eyes should aid both in finding food as well as detecting predators. On the other hand, eyes are usually very conspicuous and several studies have suggested that eye size is associated with predation risk. However, experimental evidence is scant. In this study, we address how predation affects variation in eye size by performing two experiments using Eurasian perch juveniles as prey and either larger perch or pike as predators. First, we used large outdoor tanks to compare selection due to predators on relative eye size in open and artificial vegetated habitats. Second, we studied the effects of both predation risk and resource levels on phenotypic plasticity in relative eye size in indoor aquaria experiments. In the first experiment, we found that habitat altered selection due to predators, since predators selected for smaller eye size in a non-vegetated habitat, but not in a vegetated habitat. In the plasticity experiment, we found that fish predators induced smaller eye size in males, but not in females, while resource levels had no effect on eye size plasticity. Our experiments provide evidence that predation risk could be one of the driving factors behind variation in eye size within species.


Assuntos
Meio Ambiente , Olho/crescimento & desenvolvimento , Percas/crescimento & desenvolvimento , Comportamento Predatório , Animais , Feminino , Cadeia Alimentar , Masculino , Tamanho do Órgão , Percas/fisiologia , Fatores Sexuais
14.
J Insect Physiol ; 114: 23-29, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30716335

RESUMO

Prey species are often non-randomly distributed along predator gradients but according to how they trade off growth against predation risk. The foraging-mediated growth/predation risk trade-off is well established, with increased foraging accelerating growth but also increasing predator induced mortality. While adaptations in digestive physiology may partly modify the relationship between foraging and growth in response to predation risk, studies exploring the impact of digestive physiology on growth in prey subjected to predation risk are still scarce. Larvae of the dragonfly genus Leucorrhinia segregate at the species level between lakes either being dominated by predatory fish (fish-lakes) or predatory invertebrates (dragonfly-lakes). Predators of these two lake types differ dramatically in their hunting style like searching and pursuing mode causing different selection pressure on prey traits including foraging. In a laboratory experiment we estimated growth rate, digestive physiology (ingested food, growth efficiency, assimilation efficiency, conversion efficiency) and metabolic rate (oxygen consumption) in the presence and absence of predator cues. Whereas fish-lake and dragonfly-lake Leucorrhinia species did not differ in growth rate, they evolved different pathways of digestive physiology to achieve similar growth rate. Because fish-lake species expressed a higher metabolic rate than dragonfly-lake species, we assume energy to be differently allocated and used for metabolic demands between species of both predator environments. Further, growth rate, but not digestive physiology was plastic in response to the presence of predator cues. Our results highlight the impact of digestive physiology in shaping the foraging-mediated growth/predation risk trade-off, with digestive physiology contributing to species distribution patterns along predator gradients.


Assuntos
Adaptação Biológica , Metabolismo Basal , Digestão , Odonatos/crescimento & desenvolvimento , Comportamento Predatório , Animais , Evolução Biológica , Ecossistema , Peixes , Larva/crescimento & desenvolvimento , Consumo de Oxigênio , Seleção Genética
15.
J Anim Ecol ; 88(4): 637-648, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659605

RESUMO

A shift in the relative arrival of offspring, for example a shift in hatching time, can affect competition at the intraspecific level through size-mediated priority effects, where the larger individuals gain more resources. These priority effects are likely to be affected by climate warming and the rate of intraspecific predation, that is cannibalism. In a laboratory experiment, we examined size-mediated priority effects in larvae of the univoltine damselfly, Lestes sponsa, at two different temperatures (21 and 23°C). We created three size groups of larvae by manipulating hatching time: early hatched with a large size (extra-advanced), intermediate hatched with an intermediate size (advanced) and late hatched with a small size (non-advanced). Thereafter, we reared the larvae from these groups in non-mixed and mixed groups of 12 larvae. We found strong priority and temperature effects. First, extra-advanced larvae most often had higher survival, growth and development rates than non-advanced larvae in mixed groups, compared to groups that consisted of only extra-advanced larvae. Second, temperature increased growth and development rates and cannibalism. However, the strength of priority effects did not differ between the two experimental temperatures, because there was no statistical interaction between temperature and treatments. That is, the mixed and non-mixed groups of non-advanced, advanced and extra-advanced larvae showed the same relative change in life-history traits across the two temperatures. Non-advanced and advanced larvae had similar or higher growth rate and mass in mixed groups compared to non-mixed groups, suggesting that predation from advanced larvae in the mixed group released resources for the non-advanced and advanced larvae that survived despite cannibalism risk. Thus, a thinning effect occurred due to cannibalism caused by priority effects. The results suggest that a shift in the relative arrival of offspring can cause temperature-dependent priority effects, mediated through cannibalism, growth and development, which may change the size distribution and abundance of emerging aquatic insects.


Assuntos
Canibalismo , Odonatos , Animais , Insetos , Larva , Temperatura
16.
J Evol Biol ; 31(6): 853-865, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29569290

RESUMO

Seasonal time constraints are usually stronger at higher than lower latitudes and can exert strong selection on life-history traits and the correlations among these traits. To predict the response of life-history traits to environmental change along a latitudinal gradient, information must be obtained about genetic variance in traits and also genetic correlation between traits, that is the genetic variance-covariance matrix, G. Here, we estimated G for key life-history traits in an obligate univoltine damselfly that faces seasonal time constraints. We exposed populations to simulated native temperatures and photoperiods and common garden environmental conditions in a laboratory set-up. Despite differences in genetic variance in these traits between populations (lower variance at northern latitudes), there was no evidence for latitude-specific covariance of the life-history traits. At simulated native conditions, all populations showed strong genetic and phenotypic correlations between traits that shaped growth and development. The variance-covariance matrix changed considerably when populations were exposed to common garden conditions compared with the simulated natural conditions, showing the importance of environmentally induced changes in multivariate genetic structure. Our results highlight the importance of estimating variance-covariance matrixes in environments that mimic selection pressures and not only trait variances or mean trait values in common garden conditions for understanding the trait evolution across populations and environments.


Assuntos
Variação Genética , Traços de História de Vida , Odonatos/genética , Distribuição Animal , Animais , Europa (Continente) , Fatores de Tempo
17.
Microbiome ; 6(1): 28, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409543

RESUMO

BACKGROUND: Gut microbiota provide functions of importance to influence hosts' food digestion, metabolism, and protection against pathogens. Factors that affect the composition and functions of gut microbial communities are well studied in humans and other animals; however, we have limited knowledge of how natural food web factors such as stress from predators and food resource rations could affect hosts' gut microbiota and how it interacts with host sex. In this study, we designed a two-factorial experiment exposing perch (Perca fluviatilis) to a predator (pike, Esox lucius), and different food ratios, to examine the compositional and functional changes of perch gut microbiota based on 16S rRNA amplicon sequencing. We also investigated if those changes are host sex dependent. RESULTS: We showed that overall gut microbiota composition among individual perch significantly responded to food ration and predator presence. We found that species richness decreased with predator presence, and we identified 23 taxa from a diverse set of phyla that were over-represented when a predator was present. For example, Fusobacteria increased both at the lowest food ration and at predation stress conditions, suggesting that Fusobacteria are favored by stressful situations for the host. In concordance, both food ration and predation stress seemed to influence the metabolic repertoire of the gut microbiota, such as biosynthesis of other secondary metabolites, metabolism of cofactors, and vitamins. In addition, the identified interaction between food ration and sex emphasizes sex-specific responses to diet quantity in gut microbiota. CONCLUSIONS: Collectively, our findings emphasize an alternative state in gut microbiota with responses to changes in natural food webs depending on host sex. The obtained knowledge from this study provided us with an important perspective on gut microbiota in a food web context.


Assuntos
Bactérias/classificação , Percas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Estresse Fisiológico , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , Esocidae/fisiologia , Feminino , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Comportamento Predatório , Metabolismo Secundário
18.
Am Nat ; 190(6): 743-761, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29166165

RESUMO

How the ability to acclimate will impact individual performance and ecological interactions under climate change remains poorly understood. Theory predicts that the benefit an organism can gain from acclimating depends on the rate at which temperatures change relative to the time it takes to induce beneficial acclimation. Here, we present a conceptual model showing how slower seasonal changes under climate change can alter species' relative performance when they differ in acclimation rate and magnitude. To test predictions from theory, we performed a microcosm experiment where we reared a mid- and a high-latitude damselfly species alone or together under the rapid seasonality currently experienced at 62°N and the slower seasonality predicted for this latitude under climate change and measured larval growth and survival. To separate acclimation effects from fixed thermal responses, we simulated growth trajectories based on species' growth rates at constant temperatures and quantified how much and how fast species needed to acclimate to match the observed growth trajectories. Consistent with our predictions, the results showed that the midlatitude species had a greater capacity for acclimation than the high-latitude species. Furthermore, since acclimation occurred at a slower rate than seasonal temperature changes, the midlatitude species had a small growth advantage over the high-latitude species under the current seasonality but a greater growth advantage under the slower seasonality predicted for this latitude under climate change. In addition, the two species did not differ in survival under the current seasonality, but the midlatitude species had higher survival under the predicted climate change scenario, possibly because rates of cannibalism were lower when smaller heterospecifics were present. These findings highlight the need to incorporate acclimation rates in ecological models.


Assuntos
Aclimatação , Mudança Climática , Odonatos/fisiologia , Estações do Ano , Temperatura , Animais , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Modelos Biológicos , Oviposição
19.
Ecol Evol ; 7(20): 8567-8577, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29075472

RESUMO

The risk of both predation and food level has been shown to affect phenotypic development of organisms. However, these two factors also influence animal behavior that in turn may influence phenotypic development. Hence, it might be difficult to disentangle the behavioral effect from the predator or resource-level effects. This is because the presence of predators and high resource levels usually results in a lower activity, which in turn affects energy expenditure that is used for development and growth. It is therefore necessary to study how behavior interacts with changes in body shape with regard to resource density and predators. Here, we use the classic predator-induced morphological defense in fish to study the interaction between predator cues, resource availability, and behavioral activity with the aim to determine their relative contribution to changes in body shape. We show that all three variables, the presence of a predator, food level, and activity, both additively and interactively, affected the body shape of perch. In general, the presence of predators, lower swimming activity, and higher food levels induced a deep body shape, with predation and behavior having similar effect and food treatment the smallest effect. The shape changes seemed to be mediated by changes in growth rate as body condition showed a similar effect as shape with regard to food-level and predator treatments. Our results suggests that shape changes in animals to one environmental factor, for example, predation risk, can be context dependent, and depend on food levels or behavioral responses. Theoretical and empirical studies should further explore how this context dependence affects fitness components such as resource gain and mortality and their implications for population dynamics.

20.
PLoS One ; 12(9): e0184596, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28902918

RESUMO

Presence or absence of predators selects for different kind of morphologies. Hence, we expect variation in traits that protect against predators to vary over geographical areas where predators vary in past and present abundance. Abdominal larval spines in dragonfly larvae provide protection against fish predators. We studied geographical variation in larval spine length of the dragonfly Leucorrhinia dubia across Western Europe using a phylogenetic approach. Larvae were raised in a common garden laboratory experiment in the absence of fish predators. Results show that larvae from northern Europe (Sweden and Finland) had significantly longer larval spines compared to larvae from western and central Europe. A phylogeny based on SNP data suggests that short larval spines is the ancestral stage in the localities sampled in this study, and that long spines have evolved in the Fenno-Scandian clade. The role of predators in shaping the morphological differences among the sampled localities is discussed.


Assuntos
Odonatos/fisiologia , Filogeografia , Animais , Europa (Continente) , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Odonatos/anatomia & histologia , Odonatos/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...